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Abstract
Singular configurations have long been out of consideration in the study of
many-particle systems. In this paper we show that a group theoretical method
can provide boundary conditions on wavefunctions at singular configurations
of many particles. The consequences of this method are qualitatively stated
as follows. (i) If the projection of angular momentum on an axis does not
vanish, the particles will not be aligned on the axis, i.e. the wavefunction
vanishes at collinear configurations along the axis. (ii) If the total angular
momentum does not vanish, the simultaneous collision at a point will not
take place, i.e. the wavefunction vanishes at the configuration of simultaneous
collision. Furthermore, on the assumption of analyticity of the wavefunction at
singular configurations, the behaviour of the wavefunction around the singular
configurations shows that (a) the larger the projection of angular momentum
on an axis becomes, the less the particles are likely to be aligned on the line,
and that (b) the more the total angular momentum grows, the less likely the
particles are to collide at a point. The proof is carried out for three-body systems
by transforming the power series expansion of a wavefunction into a Fourier
series expansion in terms of the angular momentum eigenfunctions, in both
cases of collinear configurations and of the triple collision, without reference
to the Hamiltonian operator. These results are described quantitatively in terms
of the angular momentum quantum numbers in propositions 1 and 3 in the
text.

PACS numbers: 02.40.−k, 02.20.−a, 31.15.−p

1. Introduction

The centre-of-mass system of many particles admits a natural action of the rotation group
SO(3). The phrase ‘singular configurations’, as used in the title of this paper, means
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those configurations at which the rotation group SO(3) has non-trivial isotropy subgroups.
Practically, the singular configurations under consideration are collinear configurations and a
multiple collision. If singular configurations are removed from the centre-of-mass system, the
restricted centre-of-mass system is made into an SO(3) bundle [1], and the bundle picture works
well in the study of quantum mechanics of many bodies [2–7]. For example, reducing the
rotational degrees of freedom is well performed in this picture. In fact, we can form complex
vector bundles associated with the SO(3) bundle, on which reduced quantum systems are to be
defined. However, if we want to take singular configurations into account, the bundle picture
fails to work.

One of the authors (TI) has presented a method [8] for treating wavefunctions at singular
configurations. We call this method the Peter–Weyl method. This nomenclature comes from
the Peter–Weyl theorem on the unitary irreducible representations of compact Lie groups. This
theorem turns out to provide a method for expanding wavefunctions into Fourier series with
respect to the symmetry described by the compact Lie group. Since the Peter–Weyl method
works irrespective of whether the Lie group acts freely on a manifold in question (i.e. isotropy
subgroups are trivial everywhere) or not, we can apply the method to study the behaviour of
wavefunctions at singular configurations.

Since the kinetic operator has singularity at singular configurations [4], the boundary
behaviour of wavefunctions at singular configurations is needed for this study. Mitchell and
Littlejohn [9] studied the boundary behaviour of wavefunctions for three bodies at collinear
configurations by means of the SO(2) representations, but did not consider the boundary
behaviour at a multiple collision. In this paper, three-body systems are also treated to obtain
explicitly boundary conditions on wavefunctions both at collinear configurations and at a triple
collision, by means of the group representation theory.

The organization of this paper is as follows. Section 2 is concerned with the centre-
of-mass system. In section 3 we give a brief review of the Peter–Weyl method, according
to which we can discuss Fourier series expansions of wavefunctions and the decomposition
of the Hilbert space of wavefunctions. In section 4, the Peter–Weyl method is applied to
three-body systems. In practice, Fourier analysis is performed for wavefunctions with respect
to D functions associated with the total angular momentum operator. Section 5 is concerned
with boundary conditions on wavefunctions at collinear configurations. It is shown that if
the projection of angular momentum on an axis does not vanish, the particles will not be
aligned on the axis, i.e. the wavefunction vanishes at collinear configurations along the axis.
Furthermore, on the assumption that the wavefunction is analytic in a neighbourhood of the
collinear configuration, it will be shown that the larger the angular momentum around an axis
becomes, the less the particles are likely to be aligned on the axis (see proposition 1). To show
this fact, the power series expansion of a wavefunction is brought into the form of a Fourier
series expansion. Section 6 deals with boundary conditions on wavefunctions at the triple
collision. It will be shown, as expected, that if the total angular momentum does not vanish,
the simultaneous collision at a point will not take place, i.e. the wavefunction vanishes at the
configuration of triple collision. Furthermore, it turns out that if a wavefunction is analytic
in the neighbourhood of the triple collision, then the more the total angular momentum
grows, the less the particles are likely to collide at a point (see proposition 3). For the
proof of this fact, the Clebsch–Gordan formula is used intensively. It is to be noted that
the boundary behaviour of wavefunctions observed in sections 5 and 6 is independent of the
Hamiltonian as long as the Hamiltonian admits wavefunctions satisfying the assumption of the
propositions. In fact, the observation is made by means of transformation group theory only.
Section 7 includes remarks on the realization of the Clebsch–Gordan formula in terms of solid
harmonics.
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2. The centre-of-mass system

Let xi and mi , with i = 1, . . . , N , be position vectors and masses of point particles
in R3, respectively. Then the configurations of the point particles are denoted by x =
(x1,x2, . . . ,xN), which may be viewed as 3 × N matrices. The centre-of-mass system M is
defined to be

M =
{

x = (x1,x2, . . . ,xN)|xi ∈ R3,

N∑
i=1

mixi = 0

}
. (1)

The configurations of particles are characterized by the linear subspaces

Fx := span{x1,x2, . . . ,xN }. (2)

According to whether dim Fx = 0, 1, 2, 3, the configuration x of the particles is point-like,
collinear, planar or spatial. Thus M is broken up into four:

M =
3⋃

k=0

Mk Mk := {x ∈ M|dim Fx = k} k = 0, 1, 2, 3. (3)

The centre-of-mass system admits an SO(3) action:

�g(x) = gx = (gx1, gx2, . . . , gxN) g ∈ SO(3), x ∈ M. (4)

The isotropy subgroup Gx of G = SO(3) at x ∈ M is defined, as usual, to be Gx = {g ∈
G|gx = x}. We can show easily that SO(3) acts on M2 ∪ M3 freely, that is, if �g(x) = x for
x ∈ M2 ∪M3, then g = I (the 3×3 identity matrix), which means that the isotropy subgroups
are trivial, Gx = {I }, on M2 ∪ M3. However, on M1 and on M0, the isotropy subgroups
are non-trivial; at x ∈ M1 and at x ∈ M0, they are isomorphic with SO(2) and with SO(3),
respectively. Configurations in M0 ∪ M1 are called singular, which are point-like or collinear.
Depending on the dimensionality of the isotropy subgroups Gx , orbits Ox of G through x ∈ M

are classified into three; according to whether Gx
∼= {I }, SO(2), or SO(3), the dimension of

Ox is 3, 2 or 0.
On restricting M to Ṁ := M2 ∪ M3, we can make Ṁ into a principal fibre bundle

Ṁ → Q̇ := Ṁ/SO(3) [1], since SO(3) is compact and since SO(3) acts on Ṁ freely. However,
the total space M cannot be made into a fibre bundle, since the orbit space Q := M/SO(3) is
not a manifold. To see what occurs in this case, we take a three-body system, for example. As
is well known, the Jacobi vectors in this case are defined to be

r1 :=
√

m1m2

m1 + m2
(x2 − x1) r2 :=

√
m3(m1 + m2)

m1 + m2 + m3

(
x3 − m1x1 + m2x2

m1 + m2

)
. (5)

Thus, M is viewed as the linear space formed by all the pairs (r1, r2), or as the space of 3 × 2
matrices. Then we can regard Ṁ = M2(M3 = ∅) as the space of 3 × 2 matrices of maximal
rank. M1,M0 are the space of 3 × 2 matrices of rank one and of rank 0, respectively. Singular
configurations sitting in M1 and M0 form the boundary of the regular configurations in M2.
Note that dim Ṁ = 6, dim M1 = 4, and dim M0 = 0 for three-body systems.

In terms of the Jacobi vectors r1, r2, we can realize the projection π : M → Q as follows

(r1, r2) �→ (w1, w2, w3) := (‖r1‖2 − ‖r2‖2, 2r1 · r2, 2‖r1 × r2‖) (6)

which shows that the orbit space Q is homeomorphic with the closed half space of R3:

Q ∼= R3
�0 := {(w1, w2, w3) ∈ R3|w3 � 0}. (7)
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The subspace Ṁ , which is open and dense in M, maps to the open half space Q̇ ∼= R3
>0 :=

{(w1, w2, w3) ∈ R3|w3 > 0}, and the subspace M1 ∪ M0 to the plane determined by w3 = 0,
which forms the boundary of the orbit space Q ∼= R3

�0.
For four or more bodies, the orbit space M/SO(3) is difficult to study. Littlejohn and

co-workers have studied those spaces for four and five bodies by means of ‘kinetic rotations’
[10, 11].

In general, wavefunctions of a three-body system are described in terms of six independent
variables, three of which are the Euler angles and the remaining three are internal coordinates
(or shape parameters). We note here that dim Ṁ = 6 and dim M1 = 4. A question then
arises as to how the wavefunction for three bodies behaves when the configuration x ∈ Ṁ

is approaching a collinear one (i.e. x → x0 ∈ M1). We may expect that the wavefunction
should be subject to some kind of boundary conditions at the collinear configuration. Although
there are few occasions when singular configurations take place, they are allowed to occur,
so that we have to consider what happens in wavefunctions in the neighbourhood of singular
configurations.

3. Fourier analysis of wavefunctions

This section is a review of the Peter–Weyl method [8], which will provide the Fourier analysis
of wavefunctions. Let M be a manifold on which a compact Lie group G acts. Let µM be a
G-invariant measure on M. The space L2(M) of square integrable functions on M is the Hilbert
space we take as the space of wavefunctions, in which the G is represented unitarily through
(U(g)f )(x) = f (g−1x), g ∈ G, x ∈ M . The representation g �→ U(g) is then decomposed
into unitary irreducible representations. To describe the decomposition, we make a brief
review of the Peter–Weyl theorem.

Let µG and L2(G) denote the normalized invariant measure on G and the space of square
integrable functions on G with respect to µG, respectively. Let (Hχ , ρχ ) be unitary irreducible
representations of G, where χ ranges over all the inequivalent representations. We denote
by ρ

χ

ij the matrix elements of the representation ρχ with respect to an orthonormal basis eλ
i

of Hχ , where i, j = 1, . . . , dχ , with dχ = dimHχ . The Peter–Weyl theorem states that the
set of all the matrix elements

{√
dχρ

χ

ij

}
χ,i,j

forms a complete orthonormal system in L2(G).

Then any function ϕ of L2(G) is expanded into a Fourier series:

ϕ(h) =
∑
χ,i,j

dχρ
χ

ij (h)

∫
G

ρ
χ

ij (g)ϕ(g) dµG(g). (8)

We turn to wavefunctions. For a function f ∈ L2(M), we may view f (hx) as a function
on G with x fixed arbitrarily, fx(h) := f (hx), and apply the above expansion formula to fx to
obtain

f (hx) =
∑
χ,i,j

dχρ
χ

ij (h)

∫
G

ρ
χ

ij (g)f (gx) dµG(g) (9)

=
∑
χ,i

dχ

∫
G

ρ
χ

ii (g)f (g−1hx) dµG(g). (10)

In particular, for h = e, we have

f (x) =
∑
χ,i

dχ

∫
G

ρ
χ

ii (g)f (g−1x) dµG(g). (11)
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This suggests that we define the operators P
χ

i on L2(M) by

P
χ

i := dχ

∫
G

ρ
χ

ii (g)U(g) dµG(g). (12)

Furthermore, a straightforward calculation shows that(
P

χ

i

)† = P
χ

i P
χ

i P
χ ′
j = δχχ ′

δijP
χ

i (13)

which means that P
χ

i are orthogonal projection operators. Then equation (11) provides the
orthogonal direct sum decomposition

L2(M) =
⊕
χ,i

Im P
χ

i . (14)

Furthermore, we define the operators

P
χ

ij := dχ

∫
G

ρ
χ

ij (g)U(g) dµG(g) (15)

which prove to satisfy that(
P

χ

ij

)† = P
χ

ji P
χ

ij P
χ ′
k� = δχχ ′

δjkP
χ

i� . (16)

In particular, we have P
χ

ii = P
χ

i . Moreover, we verify that(
P

χ

ij

)†
P

χ

ij = P
χ

j P
χ

ij

(
P

χ

ij

)† = P
χ

i . (17)

It then follows that when restricted to Im P
χ

j , P
χ

ij provides the unitary isomorphism

P
χ

ij : Im P
χ

j

∼→ Im P
χ

i . (18)

Furthermore, we can show that P
χ

ij and U(g) are put together to give

P
χ

ij U(g) =
∑

k

ρ
χ

kj (g
−1)P

χ

ik U(g)P
χ

ij =
∑

k

ρ
χ

ik(g
−1)P

χ

kj . (19)

The second equation of (19) implies that the map E
χ

j : L2(M) → Hχ ⊗ L2(M) defined by

E
χ

j := 1√
dχ

dχ∑
i=1

e
χ

i ⊗ P
χ

ij (20)

satisfies

U(g−1)E
χ

j = ρχ(g)E
χ

j . (21)

This equation states that Hχ -valued functions E
χ

j f with f ∈ L2(M) are ρχ -equivariant
functions; (

E
χ

j f
)
(gx) = ρχ(g)

(
E

χ

j f
)
(x). (22)

We here introduce the space, L2(M;Hχ )G, of square integrable equivariant Hχ -valued
functions by

L2(M;Hχ )G :=
{
ψ : M → Hχ |

∫
M

‖ψ(x)‖2 dµM(x) < ∞,

ψ(gx) = ρχ(g)ψ(g), g ∈ G, x ∈ M

}
(23)
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where ‖ · ‖ denotes the norm in Hχ . Since Hχ ⊗ L2(M) is the space of Hχ -valued square
integrable functions, we can view the operator E

χ

j as a map L2(M) → L2(M;Hχ )G. The

adjoint operator
(
E

χ

j

)†
: L2(M;Hχ )G → L2(M) is defined, of course, through〈

ψ,E
χ

j f
〉
L2(M;Hχ )G

= 〈(
E

χ

j

)†
ψ, f

〉
L2(M)

ψ ∈ L2(M;Hχ )G f ∈ L2(M) (24)

where the subscripts L2(M;Hχ )G and L2(M) indicate the spaces on which the respective
inner products are defined. Then we can observe that(

E
χ

j

)†
E

χ

j = P
χ

j E
χ

j

(
E

χ

j

)† = idL2(M;Hχ )G (25)

where idL2(M;Hχ )G denotes the identity map of L2(M;Hχ )G. The above relations imply that
when restricted to Im P

χ

j , E
χ

j provides a unitary isomorphism

E
χ

j : Im P
χ

j

∼→ L2(M;Hχ )G j = 1, . . . , dχ . (26)

From equation (14) along with
⊕

j Im P
χ

j
∼= (Hχ )∗ ⊗L2(M;Hχ )G, we obtain, in conclusion,

L2(M) ∼=
⊕

χ

((Hχ )∗ ⊗ L2(M;Hχ )G). (27)

4. Three-body systems

In this section, we apply the Peter–Weyl method to a three-body system. The manifold M
we take is the centre-of-mass system for three bodies, which is identified with the pairs of
Jacobi vectors M = {(r1, r2)} ∼= R3 ×R3. The rotation group SO(3) acts on M in the manner
(r1, r2) �→ (gr1, gr2) with g ∈ SO(3). We introduce the Euler angles (φ, θ, ψ) through

g = eφê3 eθ ê2 eψ ê3 g ∈ SO(3) (28)

where ek, k = 1, 2, 3, are the standard basis of R3 and êk denote the 3 × 3 matrices defined
through êka = ek × a for a ∈ R3. Let D�

nm(g) denote the matrix elements of unitary
irreducible representations of SO(3) with � = 0, 1, 2, . . . , and |m|, |n| � � [12]. They are
expressed as

D�
nm(g) = e−inφd�

nm(θ) e−imψ (29)

where d�
nm(θ) are given by

d�
nm(θ) = (−1)n−m

√
(� + n)(� − n)(� + m)(� − m)

×
�−m∑
k=0

(−1)k

k!(� − n − k)!(� + m − k)!(n − m + k)!

×
(

sin
θ

2

)2k+n−m (
cos

θ

2

)2�−2k−(n−m)

. (30)

Let dµ(g) denote the normalized invariant volume element on SO(3), which is expressed, in
terms of the Euler angles, as

dµ(g) = 1

8π2
sin θ dθ dφ dψ with

∫
SO(3)

dµ(g) = 1. (31)

According to equation (9) with ρ
χ

ij = D�
mn and dχ = 2� + 1, etc., a wavefunction f (hx)

on M with h ∈ SO(3) is expanded into a Fourier series

f (hx) =
∞∑

�=0

∑
|m|,|n|��

(2� + 1)D�
mn(h)

∫
SO(3)

D̄�
mn(g)f (gx) dµ(g) x ∈ M. (32)
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We can use equation (32) to write out f (x) in terms of local coordinates in M. Let
(r1, r2, ϕ) be internal coordinates, local coordinates in the orbit space Q = M/SO(3), defined
through

r1 = |r1| r2 = |r2| r1 · r2 = r1r2 cos ϕ (33)

which determines a local section σ : V ⊂ Q → M by

σ : (r1, r2, ϕ) �→ σ(q) = (r1e3, r2 eϕê2e3) (34)

where V is some open subset of the shape space Q = M/SO(3), and q ∈ V . Here we
comment on the domain of σ . Originally, V must be an open subset of Q̇, so that we have
to impose the condition ϕ = 0, for example. However, we may extend V so as to include
the boundary points with ϕ = 0. In spite of this extension, we are allowed to call V an open
subset of Q. Then any point x in π−1(V ) is expressed as x = gσ(q) = (gr1e3, gr2 eϕê2e3).
By setting h = g and x = σ(q) in equation (32), we obtain

f (gσ(q)) =
∞∑

�=0

(2� + 1)
∑

|m|,|n|��

D�
mn(g)

∫
SO(3)

D̄�
mn(k)f (kσ (q)) dµ(k). (35)

By using the operators P �
nm defined in the same manner as in equation (15), equation (35) is

rewritten as

f (gσ(q)) =
∞∑

�=0

∑
|m|,|n|��

D�
mn(g)

(
P �

nmf
)
(σ (q)). (36)

We may take another local section τ : W → M with W ∩ V = ∅. Then x ∈ π−1(V ∩ W)

has another expression, x = hτ(q). The right-hand side of equation (36) takes a
slightly different form accordingly, but it is related to the original expression by a suitable
transformation arising from equation (19).

The map E�
m : L2(M) → H� ⊗ L2(M) is defined as in equation (20)

E�
mf = 1√

2� + 1

∑
|m′|��

e�
m′ ⊗ P �

m′mf (37)

where e�
m′ , denoted usually by |�m′〉, is the basis of the representation space H� assigned by �.

The ρχ equivariance condition (22) now takes the form(
E�

mf
)
(hx) = D�(h)

(
E�

mf
)
(x). (38)

Taking the local expression x = gσ(q), we obtain
(
E�

mf
)
(x) = D�(g)

(
E�

mf
)
(σ (q)), which

shows that
(
E�

mf
)
(x) is a vector of eigenstates associated with the total angular momentum

�(� + 1).
In general, from the D� equivariance condition (38), we can observe that the component

function P �
nmf has the eigenvalue −n associated with the projection of angular momentum on

the e3-axis. In fact, for a rotation et ê3 around the e3-axis, we have

D�
nm(et ê3) = e−itnδnm t ∈ R (39)

and therefore, from the second equation of (19),(
P �

nmf
)
(et ê3x) =

∑
|m′|��

D�
nm′(et ê3)

(
P �

m′mf
)
(x) = e−int

(
P �

nmf
)
(x). (40)
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Differentiating both sides of equation (40) with respect to t at t = 0, we obtain(
Ĵ 3P

�
nmf

)
(x) := 1

i

d

dt

(
P �

nmf
)
(et ê3x)|t=0 = −n

(
P �

nmf
)
(x) (41)

where Ĵ 3 is the projection of angular momentum operator on the e3-axis.
In contrast with this, if we use the first equation of (19), we will obtain, instead of

equation (41),

P �
nmĴ 3f = −mP �

nmf. (42)

5. Boundary conditions at collinear configurations

Here we consider the case where the three particles are aligned collinearly. We take the line
on which the particles are aligned to be the e3-axis and set

ζ0 := σ(q0) = (r1e3, r2e3) (43)

where q0 = (r1, r2, 0) with ϕ = 0. Then the isotropy subgroup at ζ0 ∈ M is given by et ê3 .
Hence, for a wavefunction f , we have

f (et ê3ζ0) = f (ζ0) (44)

at the collinear configuration ζ0. Differentiating this equation with respect to t at t = 0 results
in

(Ĵ 3f )(ζ0) = 0 (45)

which implies that, if f (ζ0) = 0, the projection of angular momentum on the axis of collinear
configuration vanishes. By contraposition, this can be interpreted as follows. If the projection
of angular momentum on an axis does not vanish, then three particles will not be aligned on
the axis, i.e. the probability that the three particles happen to be aligned on the line is zero.

It is to be noted that we can choose any axis other than e3-axis as the one on which three
particles are aligned. In fact, if we take e′

3 = he3, and set ζ ′
0 = (r1e

′
3, r2e

′
3), then for the

isotropy subgroup et ê′
3 at ζ ′

0, we have f (et ê′
3ζ ′

0) = f (ζ ′
0). From et ê′

3 = het ê3h−1, this equation
becomes

f (et ê′
3ζ ′

0) = (U(h)eit Ĵ 3U(h−1)f )(ζ ′
0) = (eitK̂3f )(ζ ′

0) = f (ζ ′
0) (46)

where K̂3 is one of the angular momentum operators with respect to the so-called body frame.
When differentiated with respect to t at t = 0, the above equation provides

(K̂3f )(ζ ′
0) = 0 (47)

implying that if f (ζ ′
0) = 0, the projection of angular momentum on the e′

3-axis vanishes.
The counterpart of this fact in classical mechanics is easy to see. Let (r1(t), r2(t)) be a

trajectory of a classical three-body system. If the three bodies are aligned on a line at t0, we
have r1(t0) = λ1d and r2(t0) = λ2d, where d is a unit vector in the line of alignment and
(λ1, λ2) = (0, 0) are constants. Then we have

(r1(t) × ṙ1(t) + r2(t) × ṙ2(t)) · d = (r1(t0) × ṙ1(t0) + r2(t0) × ṙ2(t0)) · d = 0 (48)

which shows that the total angular momentum vanishes when projected on the axis on which
three bodies are aligned. It then follows by contraposition that if the angular momentum has
a non-vanishing component around d, three particles will not be aligned on the d-axis.

So far we have obtained the physically reasonable boundary condition at the singular
configuration ζ0. Referring to the Fourier series expansion (36) and the equivariance
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condition (38), we can obtain the same boundary condition. Since the isotropy subgroup
is represented as in equation (39), the equivariance condition at ζ0 takes the form(

P �
nmf

)
(ζ0) = e−int(P �

nmf
)
(ζ0) (49)

which implies that(
P �

nmf
)
(ζ0) = 0 if n = 0. (50)

Since −n assigns an angular momentum eigenvalue (see equation (41)), we verify again that
if the angular momentum n is not zero, the wavefunction must vanish at ζ0.

We now wish to gain an insight into the behaviour of the wavefunction f (gσ(q)) around
the collinear configuration ζ0 in more detail. Setting g = eφê3 eθ ê2 eψ ê3 = g0 eψ ê3 with
g0 = eφê3 eθ ê2 , we put f (gσ(q)) in the form f

(
g0eψ ê3σ(q)

)
. It is to be noted that when q

tends to q0 (i.e. ϕ → 0), g0eψ ê3σ(q) approaches g0σ(q0) on account of eψ ê3σ(q0) = σ(q0).
In view of this, we break up the set of local coordinates into two: (θ, φ) and (ψ, r1, r2, ϕ).
The coordinates (θ, φ) becomes those for describing the orbit Oq0 when ϕ = 0. Furthermore,
in place of (ψ, r1, r2, ϕ), we introduce new local coordinates (r1, ξ1, ξ2, ξ3) by

ξ1 = r2 sin ϕ cos ψ ξ2 = r2 sin ϕ sin ψ ξ3 = r2 cos ϕ. (51)

Then the configuration eψ ê3σ(q) is put in the form

eψ ê3σ(q) = (r1e3, ξ1e1 + ξ2e2 + ξ3e3). (52)

To look into a geometric meaning of the new coordinates, we consider the tangent space
Tσ(q0)(M) at the collinear configuration σ(q0) = (r1e3, r2e3). We note that the tangent space
to the orbit Oσ(q0) is described as

Tσ(q0)

(
Oσ(q0)

) = span{(r1e1, r2e1), (r1e2, r2e2)}. (53)

We now take the subspace Vσ(q0) of Tσ(q0)(M) that is given by

Vσ(q0) = span{(e3, 0), (0,e3), (0,e1), (0,e2)}. (54)

Then we have the direct sum decomposition of Tσ(q0)(M),

Tσ(q0)(M) = Tσ(q0)(Oσ(q0)) ⊕ Vσ(q0). (55)

Although the subspace Vσ(q0) is not orthogonal to Tσ(q0)(Oσ(q0)) with respect to the canonical
metric ds2 = ∑

drk ·drk , its basis vectors are capable of geometric interpretation. The vectors
(e3, 0), (0,e3) correspond to the differential operators ∂/∂r1, ∂/∂ξ3 at σ(q0), respectively, and
(0,e1), (0,e2) to ∂/∂ξ1, ∂/∂ξ2 at σ(q0), respectively. If the tangent vectors (e3, 0), (0,e3)

are applied to deform infinitesimally the configuration σ(q0), it remains collinear. In contrast
with this, if the tangent vectors (0,e1), (0,e2) are applied, the configuration σ(q0) becomes
bent. Thus we are convinced that the coordinates (ξ1, ξ2) play a specific role in the study
of boundary behaviour of wavefunctions at collinear configurations. Note also that collinear
configurations are assigned by the condition ξ1 = ξ2 = 0.

We further set

z = ξ1 + iξ2 = ρeiψ ρ = r2 sin ϕ (56)

where ρ is a shape parameter expressed also as

ρ = ‖r1 × r2‖/r1. (57)

The coordinates (ρ, ψ) play a specific role, like (ξ1, ξ2).
If we view the wavefunction f

(
g0eψ ê3σ(q)

)
as a function of ψ , we may put equation (36)

in the form of a Fourier series expansion with respect to ψ

f (g0eψ ê3σ(q)) =
∞∑

n=−∞
e−inψ

∞∑
��|n|

∑
|m|��

e−imφd�
mn(θ)

(
P �

nmf
)
(σ (q)) (58)
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which is, of course, written as

f (g0eψ ê3σ(q)) =
∞∑

n=−∞
cn(g0; r1, r2, ϕ) einψ (59)

where

cn(g0; r1, r2, ϕ) := 1

2π

∫ 2π

0
e−inψf (g0 eψ ê3σ(q)) dψ. (60)

We assume here that the function f
(
g0; eψ ê3σ(q)

) = f (g0; r1, ξ1, ξ2, ξ3) is analytic in
ξ1, ξ2, which is the case if f (r1, r2) is analytic in r2. Then it may be expanded into a power
series in z, z and expressed as

f (g0 eψ ê3σ(q)) =
∞∑

�,m�0

c�m(g0; r1, ξ3)z
�z̄m

=
∞∑

�,m�0

c�m(g0; r1, ξ3)ρ
�+mei(�−m)ψ

=
∞∑

n=−∞
einψ

∞∑
k=0

ρ|n|+2kCkn(g0; r1, ξ3) (61)

where

Ckn = ck+ 1
2 (|n|+n),k+ 1

2 (|n|−n). (62)

Thus, we have obtained the Fourier coefficient cn(g0; r1, r2, ϕ) expressed as

cn(g0; r1, r2, ϕ) =
∞∑

k=0

ρ|n|+2kCkn(g0; r1, ξ3). (63)

Proposition 1. If a wavefunction f is analytic in the neighbourhood of the collinear
configuration, the Fourier coefficient cn(g0; r1, r2, ϕ) with respect to the rotation around
the axis of alignment is expressed as a power series of ρ which starts with a term of the
lowest order |n| and contains every other integer power only, where n is the eigenvalue of the
projection of angular momentum operator on the axis of alignment, and ρ = ‖r1 × r2‖/r1

describes how the shape formed by the three bodies is distant from a collinear shape.

This proposition implies that the larger the projection of angular momentum, |n|, on
an axis becomes, the less the three bodies are likely to be aligned on the axis. If we let
σ(q) → σ(q0), i.e. ϕ → 0 or π , then we have ξ3 = r2 cos ϕ → r2 and ρ = r2 sin ϕ → 0, so
that the right-hand side of equation (63) vanish if n = 0. Thus, we have found again that if the
projection of angular momentum on the axis of alignment does not vanish, the wavefunction
must vanish at the collinear configuration.

We also have to notice that proposition 1 holds true independently of the choice of an axis
of alignment. If we want to choose e′

3 = he3, h ∈ SO(3), as the axis of alignment, we can
take a local section

σ ′(q) = (
r1e

′
3, r2 eϕê′

2e′
3

) = hσ(q) (64)

where e′
2 = he2. We denote the rotation matrix by g′ = eφê′

3 eθ ê′
2 eψ ê′

3 . Then we have

g′σ ′(q) = g′
0 eψ ê′

3σ ′(q) = hg0eψ ê3σ(q) (65)
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where g′
0 = eφê′

3 eθ ê′
2 , so that the Fourier coefficient c′

n(g
′
0; r1, r2, ϕ) with respect to the rotation

around the e′
3-axis should be expressed as cn(hg0; r1, r2, ϕ) and have the same power series

expansion as equation (63) in ρ.
We have to point out in conclusion of this section that proposition 1 was first proved by

Mitchell and Littlejohn in quite a different manner [9]. In addition, we notice that the boundary
behaviour of wavefunctions around the collinear configurations plays a significant role in
showing that the singularity the kinetic energy operator has at the collinear configurations
is not essential in the sense that the kinetic energy integral is not divergent at the collinear
configurations (see [13]).

6. Boundary conditions at triple collision

In this section, we wish to consider how wavefunctions behave in the neighbourhood of the
triple collision. The equivariance condition (38) at 0 ∈ M0 takes the form(

E�
mf

)
(0) = D�(h)

(
E�

mf
)
(0) h ∈ SO(3). (66)

From this it follows that if
(
E�

mf
)
(0) = 0, we have a non-trivial invariant subspace of the

representation space H�. If � = 0, this would contradict the fact that D� are irreducible
representations. Thus we obtain

(
E�

mf
)
(0) = 0 for � = 0, or(

P �
nmf

)
(0) = 0 if � = 0. (67)

This implies that if the total angular momentum does not vanish, the triple collision will not
take place. If � = 0, then the representation space is one-dimensional, so that

(
E0

0f
)
(0) may

take a non-zero value. Hence, the triple collision may take place, if � = 0.
The counterpart of this fact in classical mechanics is easy to describe. If the triple collision

may take place, we have r1(t0) = r2(t0) = 0 at a certain time t0, so that

r1 × ṙ1 + r2 × ṙ2 = 0 (68)

for all time on account of the conservation of the total angular momentum. By contraposition,
if the total angular momentum does not vanish, then the triple collision cannot take place.

We proceed to study the boundary behaviour of wavefunctions at the triple collision in
more detail. Our objective is to extend proposition 1 to the case of triple collision. We identify
the centre-of-mass system M with R3 × R3 and denote the Cartesian coordinates of R3 × R3

by (ξi, ηj ), i, j = 1, 2, 3. For notational convenience, we use ξ, η for r1, r2. We assume that
a wavefunction f (ξ, η) on R3 × R3 is analytic at the origin. Then, f has the expansion of the
form

f (ξ, η) =
∑
I,J

cIJ ξ I ηJ (69)

where

I = (i1, i2, i3) J = (j1, j2, j3) ξ I = ξ
i1
1 ξ

i2
2 ξ

i3
3 ηJ = η

j1
1 η

j2
2 η

j3
3 . (70)

We wish to bring this power series into a Fourier series like equation (36). To this end, we first
break up equation (69) into the sum of homogeneous polynomials. Let P n(R3 × R3) denote
the space of homogeneous polynomials of degree n in ξi, ηj . It is a representation space for
SO(3) and will be decomposed into irreducible subspaces with respect to the SO(3) action.
In each irreducible subspace of dimension 2� + 1, basis polynomials pm will transform
according to

pm(g−1ξ, g−1η) =
∑

|m′|��

pm′(ξ, η)D�
m′m(g). (71)
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The decomposition of P n(R3 × R3) will be carried out as follows. Let P n(R3) denote
the space of homogeneous polynomials in xi , where xi are the Cartesian coordinates of R3.
Then, as is well known, P n(R3) is decomposed into

P n(R3) = Hn(R3) ⊕ r2Hn−2(R3) ⊕ · · · ⊕
{

rnH 0(R3) (if n is even)

rn−1H 1(R3) (if n is odd)
(72)

where r2 = ∑3
i=1 x2

i and Hm(R3) is the space of solid harmonics of degree m. As is well
known, Hm(R3) is isomorphic with the (2m+ 1)-dimensional space Vm for unitary irreducible
representations of SO(3). Since r2 is invariant under the SO(3) action, the above decomposition
implies that

P n(R3) ∼= Vn ⊕ Vn−2 ⊕ · · · ⊕
{

V0 (if n is even)

V1 (if n is odd)
. (73)

We here notice that

P k
(
R3 × R3

) =
∑

n+m=k

P n(R3) ⊗ P m(R3). (74)

Equations (72) and (74) are put together to yield

P k
(
R3

ξ × R3
η

) =
∑

n+m=k

Hn
(
R3

ξ

) ⊗ Hm
(
R3

η

) ⊕
∑

n+m=k,m�2

Hn
(
R3

ξ

) ⊗ |η|2Hm−2
(
R3

η

)

⊕
∑

n+m=k,n�2

|ξ|2Hn−2
(
R3

ξ

) ⊗ Hm
(
R3

η

) ⊕ · · · . (75)

This decomposition gives rise to the following isomorphism

P k(R3 × R3) ∼=
∑

n+m=k

Vn ⊗ Vm ⊕
∑

n+m=k,m�2

Vn ⊗ Vm−2 ⊕
∑

n+m=k,n�2

Vn−2 ⊗ Vm ⊕ · · · .

(76)

We here apply the Clebsch–Gordan decomposition formula for tensor product representations
of SO(3) [14]

Vp ⊗ Vq
∼= V|p−q| ⊕ V|p−q|+1 ⊕ · · · ⊕ Vp+q (77)

to the right-hand side of equation (76) to obtain

P k(R3 × R3) ∼= (k + 1)Vk ⊕ (k − 1)Vk−1 ⊕ · · · (78)

where we have to note that (k + 1)Vk in the right-hand side of equation (78) denotes k + 1
representation spaces isomorphic to one another. The multiple occurrence of Vm in the
decomposition of P k(R3 × R3) implies that there are a variety of realizations of Vm as spaces
of homogeneous polynomials of the same degree k but of different types, so that we have
a variety of basis polynomials that transform according to the same rule but have different
realizations. Examples will be given in the next section. Equation (78) means that P k(R3×R3)

includes representation spaces Vm with m � k only. Then we obtain the following.

Lemma 2. If all the spaces of homogeneous polynomials are decomposed into unitary
irreducible representation spaces of SO(3), the representation space V� arises from
P k(R3 × R3) with k � �.

We are now in a position to bring the Taylor series (69) into a Fourier series with respect to
D functions. For an open subset U of the orbit space Q, there exists a local section σ : U → M .
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Then we can express any point (ξ, η) ∈ π−1(U) as

(ξ, η) = (gσ1(q), gσ2(q)) g ∈ SO(3) q ∈ U. (79)

If we decompose each homogeneous part of equation (69),
∑

|I |+|J |=k cIJ ξ I ηJ with |I | =
i1 + i2 + i3 and |J | = j1 + j2 + j3, into a linear combination of basis polynomials according
to equation (78), and arrange the terms with respect to the representation spaces V�, then
equation (69) is put in the form

f (ξ, η) =
∞∑

�=0

f�(ξ, η) f�(ξ, η) :=
∑
n��

p(�,n)(ξ, η) (80)

where p(�,n)(ξ, η) denotes a linear combination of all basis polynomials of degree n(� �) that
are in µ�,nV�, where µ�,n is the multiplicity of V� in the decomposition of P n(R3 × R3):

p(�,n)(ξ, η) =
∑

|m|��

a(�,n)
m p(�,n)

m (ξ, η) + · · · (the sum of µ�,n similar terms). (81)

We now insert the coordinate description (79) of (ξ, η) into p(�,n)(ξ, η), and use the
transformation rule (71) for basis polynomials. Then we can put f�(ξ, η) in the form

f�(ξ, η) =
∑
n��

p(�,n)(gσ1(q), gσ2(q)) =
∑

|m|,|m′|��

D�
mm′(g

−1)c
(�)
mm′(q) (82)

where

c
(�)
mm′(q) =

∑
n��

a(�,n)
m p

(�,n)
m′ (σ1(q), σ2(q)) + · · · . (83)

Thus, the power series (69) is put in the form of a Fourier series with respect to D functions:

f (gσ1(q), gσ2(q)) =
∞∑

�=0

∑
|m|,|m′|��

D�
mm′(g

−1)c
(�)
mm′(q). (84)

Summing up the above, we obtain the following.

Proposition 3. Suppose that a wavefunction f for a three-body system is analytic at the
origin of the centre-of-mass system R3 × R3. Then f can be decomposed into the sum
of eigenstates f� associated with the eigenvalue �(� + 1) of the total angular momentum
operator (see equations (80) and (82)). The eigenstate f� is expressed as a power series in
ξi, ηj , which starts with the lowest-order terms of the form ξ I ηJ with |I | + |J | = �, where
|I | = i1 + i2 + i3, |J | = j1 + j2 + j3. Furthermore, f� can be expressed as a linear combination
of D�

mn(g) with |n|, |m| � �, coefficients of which are functions of shape variables (see
equation (83)).

This proposition implies that the more the total angular momentum �(� + 1) grows, the
less the three particles are likely to collide simultaneously. We notice in addition that boundary
conditions at the triple collision for a planar three-body system have been obtained in [15],
which looks rather like proposition 1. In conclusion, we notice that our result is independent
of the Hamiltonian operator. In [13], it is shown also that the singularity the kinetic energy
operator has at the triple collision is not essential in the sense that the kinetic energy integral is
not divergent at the triple collision. If the Hamiltonian operator is of the harmonic oscillator
type, the boundary behaviour of wavefunctions at the origin (i.e. at the triple collision) are
already known (see [16], for instance).
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7. Remarks

In conclusion, in order to obtain examples of basis polynomials transforming as equation (71),
we work with the Clebsch–Gordan decomposition formula (77) in the cases of p = q = 1
and of p = 2, q = 1 in detail. First we take the case of p = q = 1. For V1

∼= H 1
(
R3

ξ

)
and

V1
∼= H 1

(
R3

η

)
, we have

H 1
(
R3

ξ

) ⊗ H 1
(
R3

η

) ∼= V0 ⊕ V1 ⊕ V2. (85)

We will study how V�, � = 0, 1, 2, are realized as spaces of polynomials in ξ, η. It is easy to
see that a basis polynomial in V0 is given by

p(0)(ξ, η) = ξ · η. (86)

This is because it is invariant under the SO(3) action.
We turn to V1. Let

ζ = ξ × η. (87)

Then, under the SO(3) action, ζ transforms according to ζ �→ gζ. As is well known [12], the
polynomials defined to be(

q
(1)
1 (x), q

(1)
0 (x), q

(1)
−1(x)

) =
(

−x1 + ix2√
2

, x3,
x1 − ix2√

2

)
(88)

transform according to

q(1)
n (g−1x) =

∑
|m|�1

q(1)
m (x)D1

mn(g). (89)

In fact, the polynomials q(1)
m (x) are related to the spherical harmonics by

q(1)
m (x) =

√
4π

3
rY1m(θ, φ) m = 1, 0,−1. (90)

Thus, we have found the following basis polynomials in V1:

p(1)
m (ξ, η) := q(1)

m (ξ × η) m = −1, 0, 1. (91)

Before proceeding to V2, we notice that

H 1
(
R3

ξ

) ⊗ H 1
(
R3

η

) = {tr(CξηT )|C ∈ C3×3} (92)

where C3×3 denotes the vector space of the 3 × 3 complex matrices, which is endowed with
the inner product through 〈C1, C2〉 = tr(C∗

1C2) with C∗ denoting the Hermitian conjugate
of C. The right-hand side of equation (92) may be identified with C3×3. The SO(3) action
(ξ, η) �→ (g−1ξ, g−1η) gives rise to a unitary transformation on C3×3 in the manner

C �−→ gCg−1 g ∈ SO(3). (93)

As is easily seen, C3×3 is decomposed into the orthogonal direct sum

C3×3 = M0(3, C) ⊕ M1(3, C) ⊕ M2(3, C) (94)

where

M0(3, C) = {λI3|λ ∈ C} (95)

M1(3, C) = {C ∈ C3×3|C = −CT } (96)

M2(3, C) = {C ∈ C3×3|C = CT , tr(C) = 0}. (97)
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This may be viewed as a realization of the Clebsch–Gordan decomposition, C3×3 =
C3 ⊗ C3 ∼= V0 ⊕ V1 ⊕ V2. Put another way, M0(3, C),M1(3, C),M2(3, C) are realizations
of V0, V1, V2, respectively. The basis polynomials we have already found are associated with
bases of M0(3, C) and of M1(3, C)

p(0)(ξ, η) = tr(I3ξηT ) p(1)
m (ξ, η) = tr(γmξηT ) |m| � 1 (98)

where

γ1 = 1√
2


0 0 −i

0 0 1
i −1 0


 γ0 =


0 −1 0

1 0 0
0 0 0


 γ−1 = 1√

2


0 0 −i

0 0 −1
i 1 0


 . (99)

We now discuss the realization of V2 in terms of polynomials in ξ, η. Defining the
following matrices, which are in M2(3, C),

σ−2 = 1

2




1 −i 0

−i −1 0

0 0 0


 σ−1 = 1

2




0 0 1

0 0 −i

1 −i 0


 σ0 = 1√

6




−1 0 0

0 −1 0

0 0 2




σ1 = 1

2




0 0 −1

0 0 −i

−1 −i 0


 σ2 = 1

2




1 i 0

i −1 0

0 0 0


 (100)

we set

p(2)
m (ξ, η) = tr(σmξηT ) |m| � 2. (101)

Hence, the space span
{
p(2)

m (ξ, η)
}

|m|�2 is a realization of the representation space V2. We

notice here that for ξ = η = x, p(2)
m (ξ, η) reduce to the spherical harmonics

q(2)
m (x) := p(2)

m (x,x) =
√

8π

15
r2Y2m(θ, φ) (102)

which transform according to q(2)
m (g−1x) = ∑

|n|�2 q(2)
n (x)D2

nm(g). Since the representation
is unique up to equivalence, it turns out that p(2)

m (ξ, η) are subject to the same transformation
as that for q(2)

m (x) = p(2)
m (x,x):

p(2)
m (g−1ξ, g−1η) =

∑
|n|�2

p(2)
n (ξ, η)D2

nm(g). (103)

We consider the case of p = 2, q = 1. For V2
∼= H 2

(
R3

ξ

)
and V1

∼= H 1
(
R3

η

)
, the

Clebsch–Gordan formula gives

H 2
(
R3

ξ

) ⊗ H 1
(
R3

η

) ∼= V1 ⊕ V2 ⊕ V3. (104)

Basis polynomials in V1 and in V2 are given by

u(1)
n (ξ, η) := 〈ξ, η〉q(1)

n (ξ) − 1
3 〈ξ, ξ〉q(1)

n (η) |n| � 1 (105)

u(2)
m (ξ, η) := p(2)

m (ξ × η, ξ) |m| � 2 (106)

respectively, where q(1)
n (x) and p(2)

m (ξ, η) are given by equations (88) and (101), respectively.
It is easy to verify that functions u(1)

n (ξ, η), u(2)
m (ξ, η) are in H 2

(
R3

ξ

)⊗H 1
(
R3

η

)
and transform

in a satisfactory manner, respectively.
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We proceed to basis polynomials in V3. Let

Q2(x, t) :=
∑

|m|�2

c(2)
m q(2)

m (x)t2−m (107)

Q1(x, t) :=
∑
|n|�1

c(1)
n q(1)

n (x)t1−n (108)

where q(2)
m (x) and q(1)

n (x) are given by equations (102) and (88), respectively, and(
c(2)
m

) = (2, 4, 2
√

6, 4, 2)
(
c(1)
n

) = (
√

2, 2,
√

2). (109)

We then define polynomials p
(3)
k (ξ, η) through

Q2(ξ, t)Q1(η, t) =
∑
|k|�3

c
(3)
k p

(3)
k (ξ, η)t3−k (110)

where (
c
(3)
k

) = (2
√

6, 12, 6
√

10, 4
√

30, 6
√

10, 12, 2
√

6). (111)

It is easy to see that p
(3)
k (ξ, η) ∈ H 2

(
R3

ξ

) ⊗ H 1
(
R3

η

)
. To show that p

(3)
k (ξ, η) are in V3, we

put the polynomials u(1)
n , u(2)

m , p
(3)
k in the form tr(CT P (ξ, η)), where C ∈ C5×3, the space of

5 × 3 complex matrices, and P(ξ, η) := (
q(2)

m (ξ)q(1)
n (η)

) ∈ C5×3 with |m| � 3, |n| � 1.

Let C(1)
n , C(2)

m , C
(3)
k denote the matrices associated with the polynomials u(1)

n , u(2)
m , p

(3)
k ,

respectively. Then, a straightforward calculation yields

C
(1)
−1 =




−1
√

2
2

−
√

6
6

0

0 0




C
(1)
0 =




0 0

−
√

2
2√

6
3

−
√

2
2

0 0




C
(1)
1 =




0 0

0

−
√

6
6√

2
2

−1




C
(2)
−2 =




i 0

−
√

2i
2

0

0

0 0




C
(2)
−1 =




√
2i

2
i
2

−
√

3
2

0

0 0




C
(2)
0 =




0 0
√

3i
2

0

−
√

3i
2

0 0




C
(2)
1 =




0 0

0
√

3i
2

− i
2

−
√

2i
2




C
(2)
2 =




0 0

0

0
√

2i
2

0 −i




C
(3)
−3 =




√
3

3 0 0

0

0

0

0 0




C
(3)
−2 =




1
3 0

√
2

3

0

0

0 0
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C
(3)
−1 =




√
5

15

2
√

10
15√

30
15

0

0 0




C
(3)
0 =




0 0
√

15
15√

5
5√

15
15

0 0




C
(3)
1 =




0 0

0
√

30
15

2
√

10
15√

5
15




C
(3)
2 =




0 0

0

0
√

2
3

0 1
3




C
(3)
3 =




0 0

0

0

0

0 0
√

3
3




where missing matrix entries are all zero. It is straightforward to verify that C5×3 is
decomposed into the orthogonal direct sum

C5×3 = span
{
C(1)

n

}
|n|�1 ⊕ span

{
C(2)

m

}
|m|�2 ⊕ span

{
C

(3)
k

}
|k|�3 (112)

with respect to the inner product 〈C1, C2〉 = tr(C∗
1C2). This decomposition is a realization of

C5×3 ∼= C5 ⊗ C3 ∼= V1 ⊕ V2 ⊕ V3. (113)

The decomposition (112) gives rise to a realization of the decomposition (104) as

H 2
(
R3

ξ

) ⊗ H 1
(
R3

η

) ∼= span
{
u(1)

n (ξ, η)
} ⊕ span

{
u(2)

m (ξ, η)
} ⊕ span

{
p

(3)
k (ξ, η)

}
. (114)

This shows that the polynomials p
(3)
k (ξ, η) are basis polynomials of V3. Furthermore, for

ξ = η = x, p
(3)
k (ξ, η) reduce to spherical harmonics

p
(3)
k (x,x) =

√
8π

105
r3Y3k(θ, φ) |k| � 3 (115)

which transform exactly according to

p
(3)
k (g−1x, g−1x) =

∑
|k′|�3

p
(3)
k′ (x,x)D3

k′k(g). (116)

Since the representation of SO(3) in V3 is irreducible and unique up to equivalence, the
polynomials p

(3)
k (ξ, η) should be subject to the transformation

p
(3)
k (g−1ξ, g−1η) =

∑
|k′|�3

p
(3)
k′ (ξ, η)D3

k′k(g). (117)
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